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General guidelines for marking

» Granularity for marks is 0.1 p.

* Asimple numerical error resulting from a typo is punished by
0.2 p unless the grading scheme explicitly says otherwise.

* Errors which cause dimensionally wrong results are punished
by atleast 50 % of the marks unless the grading scheme explic-
itly says otherwise.

* Propagating errors are not punished repeatedly unless they
either lead to considerable simplifications or wrong results
whose validity can easily be checked later.

T1: Floating cylinder
Solution I: energetic approach

Denote the density of the liquid by o, so the density of the cylin-
der is yo. In equilibrium (i.e. when the net force acting on the
cylinder is zero) the immersed part of the cylinder has height

~vh.

Consider the system in a moment when the cylinder is dis-
placed by distance x; downward and moves down with veloc-
ity v1. As a result of the motion of cylinder the liquid level rises
by some height &9, and the liquid flows in the gap between the
cylinder and beaker with some velocity vo upwards (see Fig. 1).
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The relation between the aforementioned displacements and ve-
locities are given by the continuity law:
x1s =x2(S —58), vis=wv9(S —s).

In the following we express the potential and kinetic energy of
the system. Compared to the equilibrium position the cylinder
of mass yosh sunk by x1, while the potential energy change
caused by the redistribution of liquid can be imagined as the
center of mass of liquid with mass psx rises by distance h +
x1/2 + x9/2. Taken the potential energy in the equilibrium
state to be zero, the potential energy in the state indicated in the
right figure can be written as

1+ T2

— /-

After opening the bracket the first two terms cancel each other:

Eyot = —voshgxi + 0sr19 (’Yh +

1
Epot = 5@391'1(3;1 + .%'2) :

After expressing xo from continuity law and some simplification
we get a quadratic expression for the potential energy:

1 sS 5
T ) = -0=——gx7.
1 25—391

Now let us calculate the kinetic energy of the system. The con-
tribution from the cylinder is straightforward, ’ygshv% /2, but
the motion of the liquid is more complicated.

1 ]
Epot = 5@591‘1 <331 + S _ s

Note. We may notice that since s/(S — s) = 50, the speed vy of
the liquid in the narrow gap is 50 times larger than the typical speed
of the liquid below the cylinder (which can be estimated to be in the
range of v1). And while the mass of the liquid below the cylinder is
much larger than the mass of liquid inside the gap (the ratio is ca. 25 if
the ,few centimeters” in the problem text is taken to be 3.5 cm), the ki-
netic energy is proportional to the square of the velocity, so the kinetic
energy of the liquid inside the gap is roughly 100 times larger than the
kinetic energy of the liquid below the cylinder.

Since the kinetic energy of the liquid below the cylinder is
negligible, we can write the total kinetic energy of the system
as:

2 2

cylinder

1 1

Byin = Jygshvf +=0(S = s) (vh+ 1 + 22) U% .
—_—

liquid

Here x1,x2 < vh, so we shall keep only the term containing
~h in the second bracket:

1 1
Eyin = =y0shvi + =0(S — s)vyhv3

2 2
Expressing v from continuity law gives the following:
1 1 s 1 sS
Fuin = —yoshv? + = ovh v = Zovh v?
kin = 57080V F Gy v = Gy vl

The potential and kinetic energies can be written in the form

1
2 2
ikeff xy, Exin = §meff"U1 )

where the effective spring constant and effective mass are given
by

1
Epot =

o sS sS
eff—QS_sga S—S.
So the oscillation is indeed harmonic, thus the angular fre-

quency and the period are:
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Note. The static restoring force, acting on the cylinder is due to the
change (relative to the equilibrium position) of the hydrostatic pres-
sure at its lower base:

Metr = 0Yh

sS
F = —spg(x1 + x2) = g P9

This immediately gives effective stiffness of the system keg = szs 0g.
Alternatively, one may wish to integrate f F'dxq to get the potential
energy
sS pg 2
S—s2

Epot =
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Solution II: dynamical approach

When the cylinder is displaced from its equilibrium position
downwards by distance x1, the net restoring force (pointing up)
can be calculated as the sum of the weight of the cylinder and
the force from the difference of pressures at the top (pg) and bot-
tom (p) of the cylinder. As a result of the net force, the cylinder
accelerates upwards with a1, and at the same time, the water lo-
cated in the gap between the cylinder and the wall of the beaker
accelerates down with ao. The relation between the magnitudes
of a1 and ag is given by the continuity law:

sa; = (S — s)az .
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If the water in the gap was not accelerating, the pressure differ-
ence p — po would be equal to the hydrostatic pressure of the
water column in the gap. Due to the acceleration of the water,
p — po can be expressed from Newton’s 2nd law applied for the
water column of unit area located in the gap:

po — P+ 09(vh + x1 + x2) = o(vh + 1 + 22)as,

where we used the notations of Solution I, and the downward
direction was taken as positive.

Newton’s 2nd law for the cylinder reads as

(p — po)s — yoshg = yosha .

After expressing p — pg from the previous equation, and then
substituting it here we get:

09(vh+x1+x2)s— o(yh+x1+1x2)ass—yoshg = yosha; .

Since the amplitude of the water level is small, the terms con-
taining aox1 and asxo can be neglected. After rearranging we
get:

09s(x1 + x2) = yosh(as + a2) .

Using the relations between the displacements and accelera-
tions we finally get:

al = %xl .
Taking into account the opposite directions of x1 and ag, this
is the dynamical condition of a simple harmonic motion with
angular frequency and period

h
g 7 053s.
g

T=2
vh’ "

w =

Note. In this solution we assumed that the pressure p is constant
throughout the bottom surface of the cylinder. This assumption is
equivalent with saying that the horizontal acceleration of the water
below the cylinder at every point is much smaller than ao, which is
reasonable.

Preliminary marking scheme

All solutions should be graded according to only one marking scheme
(either energetical or dynamical). If the student used both ideas, that
marking scheme should be used which results in a higher score.

Solution I: energetic solution pts

i Height of submerged part of cylinder in equilib- | 0.5
rium is yh.

ii | Potential energy change of cylinder 0.5

iii | Potential energy change of water as a function of | 1.0
the small displacement of cylinder

iv | Correct effective spring constant (or equivalent, i.e. | 0.5
quadratic relationship between Epot and 1)

v Kinetic energy of cylinder 0.5

vi | Continuity law either for displacements or veloci- | 1.0
ties (only 0.5 p if the factor is S /(S — s))

vii | Taking into account the kinetic energy of water. 0.5

viii | Stating (1.0 p) and reasoning (0.5 p) that the kinetic | 1.5
energy of water below the cylinder is negligible

ix | Expressing the kinetic energy of water inside the | 1.5
gap as a function of velocity of cylinder.

X Correct effective mass (or equivalent, i.e. quadratic | 0.5
dependence of Eyi, on vq) after neglecting small
terms. 0 p if meg = yohs.

xi | Expressing w from the formulas for Fp and Eyi, | 1.5
W = 4/ k‘eff/ Mg Or equivalent). For the formula
only 0.5 p.

xii | T =2n/w 0.3

xiii | Correct substitution of values, final result 0.2

Total number of points | 10.0

Solution II: dynamical solution pts

I Height of submerged part of cylinder in equilib- | 0.5
rium is yh

II | Realizing that the pressure difference between top | 2.5
and bottom of the cylinder is not pg X height diff.

III | Newton’s 2nd law for water in the gap with nonzero | 1.5
acceleration. (0 p for p — pg = 0g X height diff.)

IV | Newton’s 2nd law for cylinder (still full mark if IT | 1.0
was not realized but p — pg was used properly)

V | Continuity law either for displacements or acceler- | 1.0
ations (only 0.5 p if the factor is S /(S — s))

VI | Concluding a linear relation between acceleration | 1.5
and displacement of cylinder

VII | Expressing w from the dynamical equations (ex- | 1.5
pressing w = 1/ ke / Mg correctly or equivalent).

For the formula only 0.5 p.
vil| T =27 /w 0.3
IX | Correct substitution of values, final result 0.2
Total number of points | 10.0
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T2: Thermal oscillations
Part (a): Critical voltages

The power heating the resistor is Py = V?2/ R;. The thermal
equilibrium is reached when Py = P = a(Teq — Tp). To
avoid oscillations, the equilibrium temperature 7.q must satisfy
Teq < T:if R = Ry and Teq > T¢ if R = Rs. Solving for V/,
we have

V= RjOé(Teq

—Tp). 6))

The critical values therefore are
Vi=+v Rloz(Tc — To) and Vo = v/ RQ@(TG — To) 2

Part (b): Temperature behaviour

In the oscillating regime, we have a time-dependent current
I(t). The power dissipated over the resistor is Pg(t) =
R(t)I(t). By assumption (ii), we may assume that the ther-
mal equilibrium is reached very fast, i.e. Py(t) = P(t). The
temperature 7'(t) is therefore determined by the current via

R(OI(* o

T(t) =T+

If the resistance has value R1, the current will increase, try-

ing to reach J; = V/R;. The difference I(t) — V /Ry will

decay exponentially, with characteristic time L/ R;. The phase
transition occurs once the critical current

Oé(Tc — To)

I =
1 7

isreached. After the phase transition, the current will decrease,
approaching the new equilibrium value Jo = V /Ry. Again,
I(t) — V/ Ry will decay exponentially with characteristic time
L/ R, until the critical current

TAR

R /

Fig. 2

The maximum and minimum temperatures will be attained
just after the phase transitions occur. We obtain that

Tmax — To _ R2]12 _ R% (4)
Trin — 1o R1[22 R% '
Part (c): Period of oscillations
If the phase transition occurs at ¢ = 0, with the resistance
changing from R to R;, the current is given by
|4 14 .
I(t)= = + (I — — ) e Tul/E 5)
R; J

until the next phase transition occurs when /(t;) = I;. Hence,
the period is

gty = L (2= V/ BN L (L VR, ©
"R \L-V/R) "Ry \L-V/R,

Vi =

Inserting the relations Ry =
i/

nR; and V =
Ria(T. — Tp), we obtain the period

L 7 L -
. (T, — To) R—lln <4) —l—R—Zln( ). (7
Ry
is reached. This behaviour is shown in Fig. 1. Preliminary marking scheme

é i Task (a): Critical voltages pts
Jf ______________ al | Formula for the power dissipation Py = V?/ R;. |05
I I a2 | Relating the power dissipation to the temperature | 0.5

b of the resistor, Py = P = a(Teq — Tp)
a3 | Expressing the voltage in terms of the temperature | 0.5

if the thermal equilibrium were to be reached, V' =
I t1 0 Rja(Teq —Th)
R, - > a4 | Realising that oscillations will not happen if V' > | 0.5
R \/RQOZ(Teq — Tg) orV < «/Rloz(Teq — Tg)

oS e - ; Total number of points for Task (a) | 2.0

Fig. 1

Together with (3), we see that the temperature behaves like
in Figure 2.
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Task (b): Temperature behavior pts

b1 | Realisingthatthe [ —t curves are made of segments | 1.0
of exponents

b2 | Realising that these exponents approach exponen- | 1.0
tially the stationary values .J; with a characteristic
time L/ R;

b3 | Realising that this exponential behaviour breaks | 1.0
down once the critical temperature is reached

b4 | Relating the critical temperature to the correspond- | 0.5
ing critical current /;

b5 | Realising that the temperature curve 7'(¢) is re- | 0.5
lated to I (t)-curve, T'(t) = Tp + %W

b6 | Drawing a correct final sketch which has the follow- | 1.0
ing features: exponential segments showing an ex-
ponential relaxation of 7'(¢) in a right direction; a
jump in a right direction when 7' reaches T . (sub-
tract 0.2 for each missing label on the axes and also
if the temperature jumps do not occur at the same
value of T’

b7 | Using the feature from the graph that the maximal | 0.5
and minimal temperatures are taken immediately
after a phase transition

b8 | Correct answer for the ratio of the maximal and | 0.5
minimal temperatures

Total number of points for Task (b) | 6.0

Task (c): Period of oscillations pts

cl | Expressing the duration of each of the exponential | 1.0
segments as t; = - In 2{“ where Al;; and

J Jf

Al j,f denote the corresponding initial and final de-
partures of the current from the equilibrium value

c2 | Correct first and second terms in the final answer | 1.0

Total number of points for Task (c) | 2.0

T3: Dipole in a magnetic field
Part (a): Uniform linear motion

Lorentz forces acting on the charges:

where 7’is a vector from the center of mass to the position of the
positive charge.

.l

)

According to Newton’s first law, the center-of-mass C' of the
dipole will move with constant velocity provided that the net
force:

F=F,+F =q@. —7.)xB, )

acting on the dipole, is zero. Since ¥4,0_ and B are perpendic-
ular, we require ¥4 = ¥_. It means that dipole does not rotate:
w=uwqy = 0.

The pure translation, however, is possible if the pair of forces
ﬁ+, ﬁ_, has zero torque about C":

We conclude that scalar product is zero only when ¢ | 7, i.e.
the initial velocity should be parallel to Y direction.

In summary, the dipole will move uniformly along Y if, and
only if, 7Y and wp = 0.

Part (b): Circular motion

The net force can be calculated as:

where p'is a dipole moment (|p] = gd = 2¢r and the direction
aligns with 7).

When C orbits a circle, ﬁ acts as a centripetal force, i.e. it
points to the center of the circle. Since F ||p, the dipole is always
in line with the center of the orbit. Therefore, the orbital angular
velocity of C' is equal to the angular velocity of rotation of the
dipole about C.
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The magnitude of the orbital velocity is:
vp = |wol| Re

From Newton’s second law, and accounting that the total mass
of the dipole is 2m:

2mv§  pBug

R, R.’
i.e. the magnitude of velocity is:
_pB  q¢Bd
T om T 2m
and the radius of the orbit is:
v _ qBd
© lwol  2mlwol

The coordinates of the center of the circle are:

(xw yc) = (iRw O)

where the “+7 sign corresponds to wg > 0, i.e. counter-
clockwise rotation, and the “«.” sign —to clockwise rotation.
In either case, the initial velocity should point to the negative Y

direction:
qdB .

g = .
0 2m
Part (c): Reversal of the dipole

In (10) we have shown that the net force:

F=2¢&x7) xB=(3xp)xB.

Since the dipole moment p rotates with angular velocity &J, its
time derivative:

ap .
— =w X
dt b
From Newton’s second law:
dv - dp ~
2m— =F = — x B
"t dt

By integrating the equation, we arrive at an additional conserva-
tion law in the system (conservation of the so called “generalized
momentum’ ):

2mv — p X B = const

Thus, if p’ has reversed its direction from py to p1 = —po,
then the velocity:

. (i—po)xB poxB
:’U =
1 o+ o

(11)

Since the magnetic field does not perform work on moving
electric charges, the kinetic energy of the dipole is conserved:
I 2 _

5(&)0 = 50&)1 +

2m
2

Here, I = 2 x m(d/2)? = md?/2 is the moment of inertia
of the dipole with respect to its center-of-mass. Since v doesn’t
depend on angular velocities, wg is minimal when w; = 0. Fi-

nally,
2m  poB |4 2qB
Wi =N =T N E T T

Alternatively, we canintroduce 6 to be the angle between the
dipole moment and the axis X (fy = 0) and rewrite the equa-
tions of translational motion in coordinates using w = 6:

qBd

Uy = 9% cos 6,

qBd

Uy = 92— sin 0.
m

By integrating these equations, given zero initial velocity, we
find how velocity depends on 6:
qBd . qBd
Uy = —— sinf vy = —— (1 — cosh).
T 2m ’ Y 2m ( )
Using the expression (9) for the torque, we can write the equa-
tion of rotational motion as:

2132 72
. PB2d?
10 =17 = —2¢B(ryvy + ryvy) = R sin 6,
. 2B2
0+ ——-sinf =0, (12)
m

This is the equation of a mathematical pendulum of length L in
gravitational field ¢ = L(gB/m)?. And the equivalent ques-
tion becomes what is the minimal push 90 required in the bot-
tom position for the pendulum to reach the top position. Kinetic
energy of the pendulum K = %mLQ«ég will be transfered to the
potential energy U = 2mgL, from which we find:

. / B
Wmin — 90 = 4% = 2%

Note. Due to symmetry, both clockwise and counter-
clockwise initial rotation with absolute value of |wg| will work.

Part (d): Trajectory asymptote

If dipole’s trajectory has an asymptote, then its movement along
the asymptote is uniform. Indeed, if there is a linear motion with
acceleration, the dipole p'should be always aligned with the di-
rection of motion, thus, not rotating. and as we found in part (a),
the absence of rotation can only be maintained if ¥ = const and
v L p

The uniform linear motion requires w = 0, and this hap-
pens in the limit when the orientation is reversed pj = —pp.
According to (11), in the limit, the dipole is travelling with the
speed 1 = poBj/m. Thus the asymptote is parallel to Y axis:
x = D (for counter-clockwise initial rotation).
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U1 U1

If R4+ and R_ are absolute positions of the charges, we can
write equation for the angular momentum around the origin

dlo -

d—tozm (qRs x B) + R_ x (—qR_ x B) =
Lo - qéd

—qB (R Re— R R ) = -2 (R - R2)

After integration, we find one more conservation law (conser-
vation of the “generalized angular momentum”):

— —

. 4B o5 L
Lo+%7 (RL - R2) = Lo+ %> ((Ry+ R (B - R))

= Lo+ B(R - ) = const,

where R =
also used the fact that (R, — B_) = 2¢7 =

%(ﬁ+ + RL) is the position of center of mass. We

Initially, centre of mass coincides with origin (ﬁo =0):

d* ¢qB
Lo(0) = Twy = 2m% 222 = ¢Bd2. (13)
4 m
At asymptote, the dipole has reversed direction p| = —pp and

charges are travelling along parallel lines xt = D =+ r with the
velocity 71 :

Lo(o0)+B(Ry-f1) =

B
= 2mD™= _ BDp, = BDp, =
m

m(D—r)vi+m(D~+r)vi—BDpg

BDqd. (14)

Since (13) equals (14), we conclude that D = d.

We can arrive to the same conclusion differently. Notice that
we are interested in the x coordinate of C' at infinity:

qu

(0.9}
D::UOO:/ Uy dt = sdet.
0 2m Jo
From (12), we can express sin 6:
o0
sinf dt = / dt =
/0 2 BQ
2
m 2m
232 (‘91 90) = @Wmin = qu
Finally,
_gBd2m
 2m ¢B
Note. If initial rotation is clockwise (wg < 0), the asymptote
has an equation x = — D, but the distance to the origin remains
the same.

Preliminary marking scheme

Part (a): Uniform linear motion pts
al | Rationalizes that the net force on the dipole is zero | 0.7
if the two poles move with equal velocities.
a2 | Concludes that wg = 0. 0.3
a3 | Using the argument of zero torque, concludes that | 0.7
the velocity should be perpendicular to the dipole.
a4 | States explicitly that 7 ||Y (or L X). 0.3
Total number of points for part (a) | 2.0
Part (b): Circular motion pts
b1 | Derives expression for the magnitude of the net | 0.9
force on the dipole in terms of w AND states explic-
itly that it is parallel to the dipole axis OR derives
one single vector expression.
b2 | Realizes (drawing or explicit statement) that Fand | 05
the dipole axis point to the center of the orbit, and
concludes that wy is equal to the orbital angular ve-
locity.
b3 | Writes down Newton’s second law for the circular | 0.5
motion.
b4 | Makes use of the relation vy = |w|R.. 0.2
b5 | Derives expression for vg and specifies its direction | 0.3
(drawing or statement) OR derives one single vec-
tor expression for ¥y
b6 | Derives explicit expression for R.. 0.3
b7 | Writes down the coordinates of the center of the or- | 0.3
bit.
Total number of points for part (b) | 3.0
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Only one of the grading tables should be used for part (c), the one

which results in a higher score.

Part (c): Reversal of the dipole pts
cl | By integrating the equation(s) of motion derives a | 1.5
“generalized momentum’ conservation law —a re-
lationship between the linear momentum 2m and
the dipole moment p - in vector form OR for the
Cartesian components.
c2 | Statesexplicitly that the kinetic energy of the dipole | 0.3
conserves.
c3 | Writes down explicit expression for the kinetic en- | 1.0
ergy in terms of angular velocity and linear velocity
of the center of mass.
c4 | Realizes that wq is minimal when wq; = 0 in the | 0.2
reversed position.
¢5 | By using the “generalized momentum’ conserva- | 0.5
tion, derives explicit expression for the linear ve-
locity v1.
c6 | Applies the conservation of energy to find relation- | 0.3
ship between v; and win
c7 | Derives the final expression for wpi, 0.2
Total number of points for part (c) | 4.0
Alternative approach: pendulum analogy
Part (c): Reversal of the dipole pts
c1 | Derives the expression 7 = —B(p - ¥) for the | 0.5
torque. Even if the derivation has been made in
parts (a) or (b), the points should be assigned to
Task (c)
c2 | By integrating the equations of motion, expresses | 1.5
v, and vy in terms of 6.
c3 | Writes down the equation of rotational motion in | 0.5
terms of sin 6.
c4 | States that the angular dynamics of the dipole is | 0.3
equivalent to a large-amplitude oscillation of a
mathematical pendulum.
c5 | Realizes that wq is minimal when wy = 0 in the | 0.2
reversed position.
c6 | Applies the conservation of energy to the “equiva- | 0.8
lent pendulum”.
c7 | Derives the final expression for wp;in 0.2
Total number of points for part (c) | 4.0
Part (d): Trajectory asymptote pts
d1 | Rationalizes that the asymptote is parallel to Y,i.e. | 0.1
x==+D.
d2 | Rationalizes that asymptotically the motion is lin- | 0.2
ear uniform
d3 | Either finds conservation law Lo + B(R - ) OR | 0.3
writes I, as integral of v, (with explicit expres-
sion for v;) as a method to find D.
d4 | Correctly computes generalized angular momen- | 0.2
tum at 0 and oo OR uses sin § o 6 in integral.
d5| Concludes that D = d. 0.2
Total number of points for part (d) | 1.0




